Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Exp Biol Med (Maywood) ; : 15353702231157941, 2023 Mar 20.
Article in English | MEDLINE | ID: covidwho-2249578

ABSTRACT

The duration and protectiveness of antibodies against SARS-CoV-2 in infected subjects are still uncertain; nonetheless, anti-S-specific antibodies can contribute to protective immunity against new infections. It has been described that the level of antibodies produced in COVID-19 is related to the severity of symptoms, and the majority of the humoral response studies have been conducted in hospitalized patients who have been, then, followed over time. However, about 80% of SARS-CoV-2 infections in unvaccinated people are mild to asymptomatic, and this percentage reaches more than 95% in vaccinated individuals. Therefore, understanding the long-term dynamics of the antibody responses in this predominant part of the COVID-19-affected population is essential. In this study, we followed a cohort of individuals with mild COVID-19 who did not require hospitalization. We collected blood samples at sequential times after the SARS-CoV-2-positive qRT-PCR result. From 65 recruited patients, 50 had detectable antibodies at screening. Anti-SARS-CoV-2 IgM levels peaked around two weeks post-COVID-19 diagnostics, becoming undetectable after 65 days. IgG levels reached a peak in approximately one month and remained detectable for more than one year. In contrast to the levels of anti-SARS-CoV-2, antibody neutralization potency indexes persisted over time. In this study, humoral responses in mild COVID-19 patients persisted for more than one year. This is an important long-term follow-up study that includes responses from COVID-19 patients before and after vaccination, a scenery that has become increasingly difficult to evaluate due to the growing vaccination of the world human population.

2.
Immunology ; 2022 Sep 03.
Article in English | MEDLINE | ID: covidwho-2246810

ABSTRACT

Given increased acceptance of the CoronaVac, there is an unmet need to assess the safety and immunogenic changes of CoronaVac in patients with rheumatic diseases (RD). Here we comprehensively analysed humoral and cellular responses in patient with RD after a three-dose immunization regimen of CoronaVac. RD patients with stable condition and/or low disease activity (n = 40) or healthy controls (n = 40) were assigned in a 1:1 ratio to receive CoronaVac (Sinovac). The prevalence of anti-receptor binding domain (RBD) antibodies and neutralizing antibodies was similar between healthy control (HC) and RD patients after the second and the third vaccination. However, the titers of anti-RBD IgG and neutralizing antibodies were significantly lower in RD patients compared to HCs (p < 0.05), which was associated with an impaired T follicular helper (Tfh) cell response. Among RD patients, those who generated an antibody response displayed a significantly higher Tfh cells compared to those who failed after the first and the second vaccination (p < 0.05). Interestingly, subjects with a negative serological response displayed a similar Tfh memory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived peptides as their anti-RBD IgG positive counterpart, and all (4/4) of the non-responders in HCs, and 62.5% (5/8) of the non-responders in patients with RD displayed a positive serological response following the third dose. No serious adverse events were observed. In conclusion, our findings support SARS-CoV-2 vaccination in patients with RD with stable and/or low disease activity. The impaired ability in generating vaccine-specific antibodies in patients with RD was associated with a reduction in Tfh cells induction. The window of vaccination times still needs to be explored in future studies. Clinical trial registration: This trial was registered with ChiCTR2100049138.

3.
J Clin Med ; 12(3)2023 Feb 03.
Article in English | MEDLINE | ID: covidwho-2225417

ABSTRACT

BACKGROUND: It remains unclear what B cell and humoral responses are mounted by chronic kidney disease (CKD) patients in response to recombinant and inactivated SARS-CoV-2 vaccines. In this study, we aimed to explore the cellular and humoral responses, and the safety of recombinant and inactivated SARS-CoV-2 vaccines in CKD patients. METHODS: 79 CKD and 420 non-CKD individuals, who completed a full course of vaccination, were enrolled in the study. Adverse events (AEs) were collected via a questionnaire. Cellular and humoral responses were detected at 1, 3, and 6 months, including IgG antibody against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (anti-RBD-IgG), neutralizing antibodies (NAbs), the positive rate of NAbs and anti-RBD-IgG, RBD-atypical memory B cells (MBCs) (CD3 - CD19 + RBD + CD21 - CD27-), RBD-activated MBCs (CD3 - CD19 + RBD + CD21 - CD27+), RBD-resting MBCs (CD3 - CD19 + RBD + CD21 + CD27+), and RBD-intermediate MBCs (CD3 - CD19 + RBD + CD21 + CD27-). RESULTS: We found no differences in the positivity rates of NAbs (70.89% vs. 79.49%, p = 0.212) and anti-RBD IgG (72.15% vs. 83.33%, p = 0.092) between the CKD and control groups. A total of 22 CKD individuals completed the full follow-up (1, 3, and 6 months). Significant and sustained declines were found at 3 months in anti-RBD IgG (26.64 BAU/mL vs. 9.08 BAU/mL, p < 0.001) and NAbs (161.60 IU/mL vs. 68.45 IU/mL p < 0.001), and at 6 months in anti-RBD IgG (9.08 BAU/mL vs. 5.40 BAU/mL, p = 0.064) and NAbs (68.45 IU/mL vs. 51.03 IU/mL, p = 0.001). Significant differences were identified in MBC subgroups between CKD patients and healthy controls, including RBD-specific atypical MBCs (60.5% vs. 17.9%, p < 0.001), RBD-specific activated MBCs (36.3% vs. 14.8%, p < 0.001), RBD-specific intermediate MBCs (1.24% vs. 42.6%, p < 0.001), and resting MBCs (1.34% vs. 22.4%, p < 0.001). Most AEs in CKD patients were mild (grade 1 and 2) and self-limiting. One patient with CKD presented with a recurrence of nephrotic syndrome after vaccination. CONCLUSIONS: The recombinant and inactivated SARS-CoV-2 vaccine was well-tolerated and showed a good response in the CKD cohort. Our study also revealed differences in MBC subtypes after SARS-CoV-2 vaccination between CKD patients and healthy controls.

4.
Cell Rep ; 42(1): 111998, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2177163

ABSTRACT

Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants have recently emerged, becoming the dominant circulating strains in many countries. These variants contain a large number of mutations in their spike glycoprotein, raising concerns about vaccine efficacy. In this study, we evaluate the ability of plasma from a cohort of individuals that received three doses of mRNA vaccine to recognize and neutralize these Omicron subvariant spikes. We observed that BA.4/5 and BQ.1.1 spikes are markedly less recognized and neutralized compared with the D614G and other Omicron subvariant spikes tested. Also, individuals who have been infected before or after vaccination present better humoral responses than SARS-CoV-2-naive vaccinated individuals, thus indicating that hybrid immunity generates better humoral responses against these subvariants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Vaccines, Synthetic , Mutation , Antibodies, Viral , Antibodies, Neutralizing
5.
J Med Virol ; 95(1): e28434, 2023 01.
Article in English | MEDLINE | ID: covidwho-2173210

ABSTRACT

Heterogeneity of antibody responses has been reported in SARS-CoV-2 vaccination recipients with underlying diseases. We investigated the impact of the presence of comorbidities on the humoral response to SARS-CoV-2 vaccination in patients with chronic disease (PWCD) and assessed the effect of the number of comorbidities on the humoral response to vaccination. In this study, neutralizing antibodies (NAbs) and IgG antibodies against the receptor-binding domain (RBD-IgG) were monitored following a full-course vaccination. In total, 1400 PWCD (82.7%, inactivated vaccines; 17.3%, subunit recombinant vaccine) and 245 healthy controls (65.7% inactivated vaccines, 34.3% subunit recombinant vaccine) vaccinated with inactivated or subunit recombinant SARS-CoV-2 vaccines, were included. The seroconversion and antibody levels of the NAbs and RBD-IgG were different in the PWCD group compared with those in the control group. Chronic hepatitis B (odds ratio [OR]: 0.65; 95% confidence interval [CI]: 0.46-0.93), cancer (OR: 0.65; 95% CI: 0.42-0.99), and diabetes (OR: 0.50; 95% CI: 0.28-0.89) were associated with lower seroconversion of NAbs. Chronic kidney disease (OR: 0.29; 95% CI: 0.11-0.76), cancer (OR: 0.38; 95% CI: 0.23-0.62), and diabetes (OR: 0.37; 95% CI: 0.20-0.69) were associated with lower seroconversion of RBD-IgG. Only the presence of autoimmune disease showed significantly lower NAbs and RBD-IgG titers. Patients with most types of chronic diseases showed similar responses to the controls, but humoral responses were still significantly associated with the presence of ≥2 coexisting diseases. Our study suggested that humoral responses following SARS-CoV-2 vaccination are impaired in patients with certain chronic diseases.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Chronic Disease , China , Antibodies, Neutralizing , Immunoglobulin G , Vaccination , Antibodies, Viral
6.
Vaccines (Basel) ; 11(2)2023 Jan 21.
Article in English | MEDLINE | ID: covidwho-2200989

ABSTRACT

The Omicron BQ.1.1 variant is now the major SARS-CoV-2 circulating strain in many countries. Because of the many mutations present in its Spike glycoprotein, this variant is resistant to humoral responses elicited by monovalent mRNA vaccines. With the goal to improve immune responses against Omicron subvariants, bivalent mRNA vaccines have recently been approved in several countries. In this study, we measure the capacity of plasma from vaccinated individuals, before and after a fourth dose of mono- or bivalent mRNA vaccine, to recognize and neutralize the ancestral (D614G) and the BQ.1.1 Spikes. Before and after the fourth dose, we observe a significantly better recognition and neutralization of the ancestral Spike. We also observe that fourth-dose vaccinated individuals who have been recently infected better recognize and neutralize the BQ.1.1 Spike, independently of the mRNA vaccine used, than donors who have never been infected or have an older infection. Our study supports that hybrid immunity, generated by vaccination and a recent infection, induces higher humoral responses than vaccination alone, independently of the mRNA vaccine used.

7.
Ann Lab Med ; 43(3): 290-294, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-2198609

ABSTRACT

While numerous studies have evaluated humoral responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, data on the cellular responses to these vaccines remain sparse. We evaluated T cell responses to ChAdOx1-nCoV-19 and BNT162b2 vaccinations using an interferon gamma (IFN-γ) release assay (IGRA). ChAdOx1-nCoV-19- and BNT162b2-vaccinated participants initially showed stronger T cell responses than unvaccinated controls. The T cell response decreased over time and increased substantially after the administration of a BNT162b2 booster dose. Changes in the T cell response were less significant than those in the anti-receptor-binding domain IgG antibody titer. The study results can serve as baseline data for T cell responses after SARS-CoV-2 vaccination and suggest that the IGRA can be useful in monitoring immunogenicity.


Subject(s)
COVID-19 , ChAdOx1 nCoV-19 , Humans , BNT162 Vaccine , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies, Viral
8.
Immunol Cell Biol ; 100(10): 750-752, 2022 11.
Article in English | MEDLINE | ID: covidwho-2113212

ABSTRACT

A recently published article has confirmed that a novel immunization method of sustained and escalating antigen delivery augments the magnitude, quality and durability of humoral immune responses.


Subject(s)
HIV-1 , Immunity, Humoral , Germinal Center , Antigens , Immunization
9.
Cell Rep ; 41(4): 111554, 2022 10 25.
Article in English | MEDLINE | ID: covidwho-2104502

ABSTRACT

Due to the recrudescence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections worldwide, mainly caused by the Omicron variant of concern (VOC) and its sub-lineages, several jurisdictions are administering an mRNA vaccine boost. Here, we analyze humoral responses induced after the second and third doses of an mRNA vaccine in naive and previously infected donors who received their second dose with an extended 16-week interval. We observe that the extended interval elicits robust humoral responses against VOCs, but this response is significantly diminished 4 months after the second dose. Administering a boost to these individuals brings back the humoral responses to the same levels obtained after the extended second dose. Interestingly, we observe that administering a boost to individuals that initially received a short 3- to 4-week regimen elicits humoral responses similar to those observed in the long interval regimen. Nevertheless, humoral responses elicited by the boost in naive individuals do not reach those present in previously infected vaccinated individuals.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , BNT162 Vaccine , COVID-19/prevention & control , Antibodies, Viral , COVID-19 Vaccines , Vaccination
10.
Transfusion ; 62(9): 1779-1790, 2022 09.
Article in English | MEDLINE | ID: covidwho-1968204

ABSTRACT

BACKGROUND: Plateletpheresis involves platelet separation and collection from whole blood while other blood cells are returned to the donor. Because platelets are replaced faster than red blood cells, as many as 24 donations can be done annually. However, some frequent apheresis platelet donors (>20 donations annually) display severe plateletpheresis-associated lymphopenia; in particular, CD4+ T but not B cell numbers are decreased. COVID-19 vaccination thereby provides a model to assess whether lymphopenic platelet donors present compromised humoral immune responses. STUDY DESIGN AND METHODS: We assessed vaccine responses following 2 doses of COVID-19 vaccination in a cohort of 43 plateletpheresis donors with a range of pre-vaccination CD4+ T cell counts (76-1537 cells/µl). In addition to baseline T cell measurements, antibody binding assays to full-length Spike and the Receptor Binding Domain (RBD) were performed pre- and post-vaccination. Furthermore, pseudo-particle neutralization and antibody-dependent cellular cytotoxicity assays were conducted to measure antibody functionality. RESULTS: Participants were stratified into two groups: <400 CD4/µl (n = 27) and ≥ 400 CD4/µl (n = 16). Following the first dose, 79% seroconverted within the <400 CD4/µl group compared to 87% in the ≥400 CD4/µl group; all donors were seropositive post-second dose with significant increases in antibody levels. Importantly differences in CD4+ T cell levels minimally impacted neutralization, Spike recognition, and IgG Fc-mediated effector functions. DISCUSSION: Overall, our results indicate that lymphopenic plateletpheresis donors do not exhibit significant immune dysfunction; they have retained the T and B cell functionality necessary for potent antibody responses after vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Lymphopenia , Blood Donors , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines/adverse effects , Humans , Lymphopenia/etiology , Platelet Count , Plateletpheresis/methods
11.
Biomedicines ; 10(7)2022 Jul 12.
Article in English | MEDLINE | ID: covidwho-1938687

ABSTRACT

Vaccination against SARS-CoV-2 has become the main method of reducing mortality and severity of COVID-19. This work aims to study the evolution of the cellular and humoral responses conferred by two mRNA vaccines after two doses against SARS-CoV-2. On days 30 and 240 after the second dose of both vaccines, the anti-S antibodies in plasma were evaluated from 82 volunteers vaccinated with BNT162b2 and 68 vaccinated with mRNA-1273. Peripheral blood was stimulated with peptides encompassing the entire SARS-CoV-2 Spike sequence. IgG Anti-S antibodies (humoral) were quantified on plasma, and inflammatory cytokines (cellular) were measured after stimulation. We observed a higher response (both humoral and cellular) with the mRNA-1273 vaccine. Stratifying by age and gender, differences between vaccines were observed, especially in women under 48 and men over 48 years old. Therefore, this work could help to set up a vaccination strategy that could be applied to confer maximum immunity.

12.
Cell Rep ; 39(13): 111013, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1885674

ABSTRACT

Spacing of BNT162b2 mRNA doses beyond 3 weeks raises concerns about vaccine efficacy. We longitudinally analyze B cell, T cell, and humoral responses to two BNT162b2 mRNA doses administered 16 weeks apart in 53 SARS-CoV-2 naive and previously infected donors. This regimen elicits robust RBD-specific B cell responses whose kinetics differs between cohorts, the second dose leading to increased magnitude in naive participants only. While boosting does not increase magnitude of CD4+ T cell responses further compared with the first dose, unsupervised clustering of single-cell features reveals phenotypic and functional shifts over time and between cohorts. Integrated analysis shows longitudinal immune component-specific associations, with early T helper responses post first dose correlating with B cell responses after the second dose, and memory T helper generated between doses correlating with CD8 T cell responses after boosting. Therefore, boosting elicits a robust cellular recall response after the 16-week interval, indicating functional immune memory.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , Humans , Immunity, Humoral , RNA, Messenger , SARS-CoV-2
13.
Vaccines (Basel) ; 10(3)2022 Mar 14.
Article in English | MEDLINE | ID: covidwho-1742765

ABSTRACT

Residents of long-term care facilities (LTCFs) have been dramatically hit by the COVID-19 pandemic on a global scale as older age and comorbidities pose an increased risk of severe disease and death. The aim of the study was to assess the quantity and durability of specific antibody responses to SARS-CoV-2 after the first cycle (two doses) of BNT162b2 vaccine. To achieve this, SARS-CoV-2 Spike-specific IgG (S-IgG) titers was evaluated in 432 residents of the largest Italian LTCF at months 2 and 6 after vaccination. By stratifying levels of humoral responses as high, medium, low and null, we did not find any difference when comparing the two time points; however, the median levels of antibodies halved overtime. As positive nucleocapsid serology was associated with a reduced risk of a suboptimal response at both time points, we conducted separate analyses accordingly. In subjects with positive serology, the median level of anti-S IgG slightly increased at the second time point, while a significant reduction was observed in patients without previous exposure to the virus. At month 6, diabetes alone was associated with an increased risk of impaired response. Our data provide additional insights into the longitudinal dynamics of the immune response to BNT162b2 vaccination in the elderly, highlighting the need for SARS-CoV-2 antibody monitoring following third-dose administration.

14.
Cell Rep ; 38(9): 110429, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1734242

ABSTRACT

Continuous emergence of SARS-CoV-2 variants of concern (VOCs) is fueling the COVID-19 pandemic. Omicron (B.1.1.529) rapidly spread worldwide. The large number of mutations in its Spike raise concerns about a major antigenic drift that could significantly decrease vaccine efficacy and infection-induced immunity. A long interval between BNT162b2 mRNA doses elicits antibodies that efficiently recognize Spikes from different VOCs. Here, we evaluate the recognition of Omicron Spike by plasma from a cohort of SARS-CoV-2 naive and previously infected individuals who received their BNT162b2 mRNA vaccine 16 weeks apart. Omicron Spike is recognized less efficiently than D614G, Alpha, Beta, Gamma, and Delta Spikes. We compare with plasma activity from participants receiving a short (4 weeks) interval regimen. Plasma from individuals of the long-interval cohort recognize and neutralize better the Omicron Spike compared with those who received a short interval. Whether this difference confers any clinical benefit against Omicron remains unknown.


Subject(s)
Antibodies, Neutralizing/blood , BNT162 Vaccine/administration & dosage , Immunization Schedule , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/immunology , Antibodies, Viral/analysis , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , Cohort Studies , Female , HEK293 Cells , Humans , Immunization, Secondary/methods , Male , Middle Aged , Quebec , SARS-CoV-2/pathogenicity , Time Factors , Vaccination/methods , Vaccine Potency , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Young Adult , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology
15.
Vaccines (Basel) ; 10(2)2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-1702700

ABSTRACT

The COVID-19 pandemic threatens patients with a compromised immune and endothelial system, including patients who underwent allogeneic stem cell transplantation (alloSCT). Thus, there is an unmet need for optimizing vaccination management in this high-risk cohort. Here, we monitored antibodies against SARS-CoV-2 spike protein (anti-S1) in 167 vaccinated alloSCT patients. Humoral immune responses were detectable in 81% of patients after two vaccinations with either mRNA-, vector-based, or heterologous regimens. Age, B-cell counts, time interval from vaccination, and the type of vaccine determined antibody titres in patients without systemic immunosuppression (sIS). Similar to a healthy control cohort, mRNA vaccine-based regimens induced higher titres than vector-based vaccines. Patients on two or more immunosuppressants rarely developed immunity. In contrast, 62% and 45% of patients without or on only one immunosuppressant, respectively, showed a strong humoral vaccination response (titre > 100). Exacerbation of cGVHD upon vaccination was observed in 6% of all patients and in 22% of patients receiving immunosuppression for cGVHD. cGVHD exacerbation and low antibody titres were both associated with higher angiopoietin-2 (ANG2) serum levels. In conclusion, mRNA-based vaccines elicit strong humoral responses in alloSCT patients in the absence of double sIS. Biomarkers such as ANG2 might help with weighing cGVHD risk versus beneficial responses.

16.
Cell Rep ; 38(2): 110235, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1634873

ABSTRACT

We have analyzed BNT162b2 vaccine-induced immune responses in naive subjects and individuals recovered from coronavirus disease 2019 (COVID-19), both soon after (14 days) and later after (almost 8 months) vaccination. Plasma spike (S)-specific immunoglobulins peak after one vaccine shot in individuals recovered from COVID-19, while a second dose is needed in naive subjects, although the latter group shows reduced levels all along the analyzed period. Despite how the neutralization capacity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mirrors this behavior early after vaccination, both groups show comparable neutralizing antibodies and S-specific B cell levels late post-vaccination. When studying cellular responses, naive individuals exhibit higher SARS-CoV-2-specific cytokine production, CD4+ T cell activation, and proliferation than do individuals recovered from COVID-19, with patent inverse correlations between humoral and cellular variables early post-vaccination. However, almost 8 months post-vaccination, SARS-CoV-2-specific responses are comparable between both groups. Our data indicate that a previous history of COVID-19 differentially determines the functional T and B cell-mediated responses to BNT162b2 vaccination over time.


Subject(s)
BNT162 Vaccine/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/virology , Chlorocebus aethiops , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Lymphocyte Activation/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vero Cells
17.
J Infect Dis ; 225(7): 1129-1140, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1566022

ABSTRACT

BACKGROUND: The magnitude and durability of immune responses to coronavirus disease 2019 (COVID-19) mRNA vaccines remain incompletely characterized in the elderly. METHODS: Anti-spike receptor-binding domain (RBD) antibodies, angiotensin-converting enzyme 2 (ACE2) competition, and virus neutralizing activities were assessed in plasma from 151 health care workers and older adults (range, 24-98 years of age) 1 month following the first vaccine dose, and 1 and 3 months following the second dose. RESULTS: Older adults exhibited significantly weaker responses than younger health care workers for all humoral measures evaluated and at all time points tested, except for ACE2 competition activity after 1 vaccine dose. Moreover, older age remained independently associated with weaker responses even after correction for sociodemographic factors, chronic health condition burden, and vaccine-related variables. By 3 months after the second dose, all humoral responses had declined significantly in all participants, and remained significantly lower among older adults, who also displayed reduced binding antibodies and ACE2 competition activity towards the Delta variant. CONCLUSIONS: Humoral responses to COVID-19 mRNA vaccines are significantly weaker in older adults, and antibody-mediated activities in plasma decline universally over time. Older adults may thus remain at elevated risk of infection despite vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Immunity, Humoral , Infant , RNA, Messenger , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
18.
Cell Host Microbe ; 30(1): 97-109.e5, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1549683

ABSTRACT

The standard regimen of the BNT162b2 mRNA vaccine for SARS-CoV-2 includes two doses administered three weeks apart. However, some public health authorities spaced these doses, raising questions about efficacy. We analyzed longitudinal humoral responses against the D614G strain and variants of concern for SARS-CoV-2 in a cohort of SARS-CoV-2-naive and previously infected individuals who received the BNT162b2 mRNA vaccine with sixteen weeks between doses. While administering a second dose to previously infected individuals did not significantly improve humoral responses, these responses significantly increased in naive individuals after a 16-week spaced second dose, achieving similar levels as in previously infected individuals. Comparing these responses to those elicited in individuals receiving a short (4-week) dose interval showed that a 16-week interval induced more robust responses among naive vaccinees. These findings suggest that a longer interval between vaccine doses does not compromise efficacy and may allow greater flexibility in vaccine administration.


Subject(s)
BNT162 Vaccine/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity, Humoral/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Female , Humans , Male , Middle Aged , Vaccination/methods , Young Adult
19.
Cell Rep Med ; 2(6): 100290, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1307252

ABSTRACT

With the recent approval of highly effective coronavirus disease 2019 (COVID-19) vaccines, functional and lasting immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently under investigation as antibody levels in plasma were shown to decline during convalescence. Since the absence of antibodies does not equate to absence of immune memory, we evaluate the presence of SARS-CoV-2-specific memory B cells in convalescent individuals. Here, we report a longitudinal assessment of humoral immune responses on 32 donors up to 8 months post-symptom onset. Our observations indicate that anti-Spike and anti-receptor binding domain (RBD) immunoglobulin M (IgM) in plasma decay rapidly, whereas the reduction of IgG is less prominent. Neutralizing activity also declines rapidly when compared to Fc-effector functions. Concomitantly, the frequencies of RBD-specific IgM+ B cells wane significantly when compared to RBD-specific IgG+ B cells, which remain stable. Our results add to the current understanding of immune memory following SARS-CoV-2 infection, which is critical for secondary infection prevention and vaccine efficacy.

20.
Cell Host Microbe ; 29(7): 1137-1150.e6, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1252574

ABSTRACT

While the standard regimen of the BNT162b2 mRNA vaccine for SARS-CoV-2 includes two doses administered 3 weeks apart, some public health authorities are spacing these doses, raising concerns about efficacy. However, data indicate that a single dose can be up to 90% effective starting 14 days post-administration. To assess the mechanisms contributing to protection, we analyzed humoral and T cell responses three weeks after a single BNT162b2 dose. We observed weak neutralizing activity elicited in SARS-CoV-2 naive individuals but strong anti-receptor binding domain and spike antibodies with Fc-mediated effector functions and cellular CD4+ T cell responses. In previously infected individuals, a single dose boosted all humoral and T cell responses, with strong correlations between T helper and antibody immunity. Our results highlight the potential role of Fc-mediated effector functions and T cell responses in vaccine efficacy. They also provide support for spacing doses to vaccinate more individuals in conditions of vaccine scarcity.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , BNT162 Vaccine , Betacoronavirus , COVID-19/prevention & control , Carrier Proteins , Female , Humans , Immunity , Immunoglobulin Fc Fragments , Male , Middle Aged , Vaccination , Vaccines, Synthetic/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL